Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Res (Thessalon) ; 26: 12, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720249

RESUMO

BACKGROUND: Exploring species richness and turnover patterns and their drivers can provide new insights into underlying mechanisms shaping community assembly, with significant implications for biodiversity conservation. Here, we explored diversity patterns of non-endemic, neo-endemic and palaeo-endemic vascular plants in Crete, Greece, a Mediterranean hotspot of plant richness and endemism. We evaluated the relationship between α-diversity and environmental (bioclimatic variables, topography), and anthropogenic variables by Generalized Additive Models, after accounting for spatial autocorrelation. Then, we quantified turnover using the novel concept of zeta diversity (the number of shared species by multiple sites), a framework which allows to explore the full spectrum of compositional turnover, the contribution of rare and widespread species to observed patterns and the underlying processes shaping them. Finally, we explored the abiotic and biotic effects, i.e. how well one category of species (non-endemics, palaeo-endemics, neo-endemics) predicts the patterns of the other categories, on zeta diversity by multi-site Generalized Dissimilarity Modelling. RESULTS: We found a strong correlation between neo-endemic and palaeo-endemic α-diversity, with climate, topography, and human impact driving species richness. Zeta diversity analysis revealed a sharper decrease of shared palaeo-endemic species, followed by neo-endemics, and then by non-endemics with the number of sites considered to estimate compositional turnover. Perhaps, the narrow distributions of palaeo-endemics as relict species and often habitat specialists, thus persisting locally, and of neo-endemics that may have not reached yet their potential geographical range, resulted in the observed zeta diversity decline pattern. Deterministic processes controlled species turnover of rare non-endemic and neo-endemic species, while deterministic and stochastic processes contributed similarly to palaeo-endemic turnover. However, stochasticity dominates in the case of widespread species in all occasions. The environmental and anthropogenic variables were poor predictors of compositional turnover, especially of widespread species. However, the non-endemic species composition was correlated to rare palaeo-endemics and neo-endemics, highlighting the importance of biotic effects in driving turnover patterns. CONCLUSIONS: It seems that centers of neo-endemism of vascular plants coincide with centers of palaeo-endemism in Crete, but species richness and species turnover are shaped by different drivers.

2.
Ecology ; 100(3): e02615, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30786023

RESUMO

Fire, a frequent disturbance in the Mediterranean, affects pollinator communities. We explored the response of major pollinator guilds to fire severity, across a fire-severity gradient at different spatial scales. We show that the abundance of all pollinator groups responded to fire severity, and that bees and beetles showed in addition a significant species-diversity response. Bees, sawflies, and wasps responded to fire severity at relatively small spatial scales (250-300 m), whereas flies and beetles responded at larger spatial scales. The response of bees, sawflies, and wasps was unimodal, as predicted by the intermediate disturbance hypothesis, whereas flies and beetles showed a negative response. A possible explanation is that the observed patterns (spatial scale and type of response) are driven by taxa-specific ecological and life-history traits, such as nesting preference and body size, as well as the availability of resources in the postfire landscape. Our observational study provides an insight into the effect of fire severity on pollinators. However, future research exploring the explicit link between the pre- and postfire landscape structure and pollinator traits and responses is required for further establishment and understanding of cause-effect relationships.


Assuntos
Besouros , Incêndios , Pinus , Animais , Abelhas , Ecologia , Florestas
3.
Nat Ecol Evol ; 1(10): 1502-1510, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185514

RESUMO

Angiosperm flowers have evolved a dazzling palette of colours and a rich bouquet of scents, principally serving to attract pollinators. Despite recent progress in the ecology of pollination, the sensory floral traits that are important for communication with pollinators (for example, colour and scent) have not been assessed in an unbiased, integrative sense within a community context. Nonetheless, floral sensory stimuli are known key factors that mediate flower visitation, thus affecting community dynamics. Here we show that flowers of the phrygana, a natural Mediterranean scrubland, display integrated patterns of scent composition and colour (as perceived by pollinators). Surprisingly, the data reveal predictive relationships between patterns of volatile composition and flower reflectance spectra. The presence of nectar is related to visual cues and the qualitative composition of floral aromas. Our results reveal a coordinated phenotypic integration consistent with the sensory abilities and perceptual biases of bees, suggesting potential facilitative effects for pollination and highlighting the fundamental importance of bees in Mediterranean-type ecosystems. We offer our unbiased approach as a starting point for more extensive, global investigations of the diversity of floral sensory phenotypes and its role in the community ecology of plant-pollinator interactions.


Assuntos
Cor , Flores/fisiologia , Odorantes/análise , Ecossistema , Grécia , Pigmentos Biológicos/metabolismo , Fenômenos Fisiológicos Vegetais
4.
Oecologia ; 179(1): 187-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25899615

RESUMO

Nematode metabolic footprints (MFs) refer to the lifetime amount of metabolized carbon per individual, indicating a connection to soil food web functions and eventually to processes supporting ecosystem services. Estimating and managing these at a convenient scale requires information upscaling from the soil sample to the landscape level. We explore the feasibility of predicting nematode MFs from temperature-based bioclimatic parameters across a landscape. We assume that temperature effects are reflected in MFs, since temperature variations determine life processes ranging from enzyme activities to community structure. We use microclimate data recorded for 1 year from sites differing by orientation, altitude and vegetation cover. At the same sites we estimate MFs for each nematode trophic group. Our models show that bioclimatic parameters, specifically those accounting for temporal variations in temperature and extremities, predict most of the variation in nematode MFs. Higher fungivorous and lower bacterivorous nematode MFs are predicted for sites with high seasonality and low isothermality (sites of low vegetation, mostly at low altitudes), indicating differences in the relative contribution of the corresponding food web channels to the metabolism of carbon across the landscape. Higher plant-parasitic MFs were predicted for sites with high seasonality. The fitted models provide realistic predictions of unknown cases within the range of the predictor's values, allowing for the interpolation of MFs within the sampled region. We conclude that upscaling of the bioindication potential of nematode communities is feasible and can provide new perspectives not only in the field of soil ecology but other research areas as well.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Microclima , Modelos Teóricos , Nematoides/crescimento & desenvolvimento , Nematoides/metabolismo , Temperatura , Altitude , Animais , Biodiversidade , Ecologia , Cadeia Alimentar , Grécia , Solo/química , Microbiologia do Solo/normas
5.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
6.
Proc Natl Acad Sci U S A ; 110(35): 14296-301, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940339

RESUMO

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Solo , Dióxido de Carbono/análise , Metano/análise , Oxigênio/análise
7.
Ecol Lett ; 11(6): 564-75, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18363716

RESUMO

We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Insetos/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Polinização/fisiologia , Animais , Grécia , Observação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...